منابع مشابه
Ratliff-rush Closure of Ideals in Integral Domains
This paper studies the Ratliff-Rush closure of ideals in integral domains. By definition, the Ratliff-Rush closure of an ideal I of a domain R is the ideal given by Ĩ := S (I :R I ) and an ideal I is said to be a Ratliff-Rush ideal if Ĩ = I. We completely characterize integrally closed domains in which every ideal is a Ratliff-Rush ideal and we give a complete description of the Ratliff-Rush cl...
متن کاملOn Complete Integral Closure and Archimedean Valuation Domains
Suppose D is an integral domain with quotient eld K and that L is an extension eld of K. We show in Theorem 4 that if the complete integral closure of D is an intersection of Archimedean valuation domains on K, then the complete integral closure of D in L is an intersection of Archimedean valuation domains on L; this answers a question raised by All rings considered in this paper are assumed to...
متن کاملSpecialization and integral closure
I ′/(x) = I ′/(x) , where x = ∑n i=1 ziai is a generic element for I defined over the polynomial ring R ′ = R[z1, . . . , zn] and I ′ denotes the extension of I to R. This result can be paraphrased by saying that an element is integral over I if it is integral modulo a generic element of the ideal. Other, essentially unrelated, results about lifting integral dependence have been proved by Teiss...
متن کاملOf Integral Domains
The t-class semigroup of an integral domain is the semigroup of the isomorphy classes of the t-ideals with the operation induced by ideal t-multiplication. This paper investigates ring-theoretic properties of an integral domain that reflect reciprocally in the Clifford or Boolean property of its t-class semigroup. Contexts (including Lipman and Sally-Vasconcelos stability) that suit best t-mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2006
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.04.025